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Abstract

This paper presents an analytical method to investigate the magnetoelectric coupling effect that is a new product
property of piezoelectric—piezomagnetic intelligent composites since it is not present in each constituent. Based on
the eigenstrain formulation and the Mori-Tanaka theory, the magneto—electro—elastic Eshelby tensors and the
effective material properties of the composite are obtained explicitly. Particularly when both the matrix and the
inclusions of the composite are transversely isotropic with different magneto—electro—elastic moduli, and shapes of
inclusions are of elliptical cylinder, circular cylinder, disk, and ribbon, simple and closed-form solutions for the
magnetoelectric coupling coefficients are acquired. The solutions are a function of the shape of inclusion, phase
properties, and volume fraction of inclusions. Moreover, the derived simple expressions also show that the
magnetoelectric coupling coefficients vanish as the volume fraction of inclusions tends to zero or one. This verifies
that the magnetoelectric coupling coefficients are absent in each phase of the composite. © 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Combining two or more distinct piezoelectric and piezomagnetic (magnetostrictive) constituents,
piezoelectric/piezomagnetic composite materials can take the advantages of each constituent and
consequently have superior coupling magnetoelectric effect as compared to conventional piezoelectric or
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piezomagnetic materials. The magnetoelectric coupling effect is a new product property of the
composite, since it is absent in each constituent. In some cases, the coupling effect of piezoelectric/
piezomagnetic composites can be even obtained a hundred times larger than that in a single-phase
magnetoelectric material. Consequently, they are extensively used as magnetic field probes, electric
packaging, acoustic, hydrophones, medical ultrasonic imaging, sensors, and actuators with the
responsibility of magneto—eclectro—mechanical energy conversion. These composites are referred to as
smart or intelligent materials which can feedback the internal states of a material or structure. This may
explain why piezoelectric/piezomagnetic composite materials constitute an important branch of the
recently emerging technologies of modern intelligent materials. Particularly, applications in magnetic
sensors could be very helpful for detecting both ac and dc magnetic fields. This suggests potential usage
in magnetic storage and read-out devices, in magnetic imaging technology, and for shielding and
protecting database by sensing and shielding from damaging magnetic fields Avellaneda and Harshe
(1994).

The development of piezoelectric—piezomagnetic composites has its roots in the early work of van
Suchtelen (1972) who proposed that the combination of piezoelectric—piezomagnetic phases may exhibit
a new material property — the magnetoelectric coupling effect. Since then, the magnetoelectric coupling
effect of BaTiO;—CoFe>O4 composites has been measured by many researchers: van Run et al. (1974),
van den Boomgaard et al. (1974) among others. They have shown that there indeed exists a remarlable
magnetoelectric coupling effect in such piezoelectric—piezomagnetic composites. Much of the theoretical
work for the investigation of magnetoelectric coupling effect has only recently been carried out by
Harshe (1991), Harshe et al. (1993), Avellaneda and Harshe (1994), Nan (1994), Benveniste (1995) and
Huang and Kuo (1997). It appears that these approaches have not provided a means to find closed-form
solutions of the magnetoelectric coupling effect. Thus, the present work is an attempt to fill this
information need.

In the present paper, a presentation of some notations used, the basic theory and equations on which
the rest of this paper is built is in order in Section 2. In Section 3, the analytical solution for the coupled
magneto—electro—elastic behavior of piezoelectric—piezomagnetic composites developed in the author’s
previous work (Huang and Kuo, 1997) is utilized to derive a set of nine tensors for an ellipsoidal
inclusions in an infinite piezomagnetic matrix. These tensors will be referred to as the magneto—electro—
elastic Eshelby tensors analogous to the Eshelby tensor in elasticity (Eshelby, 1957). In addition, closed-
form expressions for the magneto—electro—elastic Eshelby tensors for some inclusions such as elliptical
cylinder, circular cylinder, penny shape, and ribbon embedded in a transversely isotropic (6 mm
symmetry) piezomagnetic medium are presented. These four inclusions are practically important in
applications and are usually discussed at once by the micromechanics and composite communities.
Section 4 takes the results derived in previous sections and applies them to determine the
magnetoelectric coupling coefficients existing in piezoelectric—piezomagnetic composites. As a result, the
magnetoelectric coupling coefficients are obtained in closed forms for the composite reinforced by
elliptic cylindrical, circular cylindrical, penny-shape, and ribbon-like inclusions, respectively.

2. Some preliminaries
2.1. The inclusion problems

Before proceeding some notations used in this article are introduced. The usually summation
convention applies to repeated subscripts with the exception that both lowercase and uppercase

subscripts are used. Lowercase subscripts take on the range 1, 2, 3, while uppercase subscripts range
from 1 to 5. Thus, T,U,=T;U;+ T4Us+ TsUs, where j = 1 — 3. With this shorthand notation, the
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magneto—electro—elastic moduli of a piezomagnetic material is conveniently expressed as

Cgmn J’ M§3’
@y J<3.M=5,
Lym=14¢, J=5 M<3,. (1)

—k) J=M=4,
- J=M=35,
otherwise.

Similarly the magneto—electro—elastic moduli of a piezoelectric material is represented as

Cl!jmn ‘]’ Mﬁ?”
ey J<3, M =4,
Ly, = e J=4, M<3, . (2)

Kk, J=4, M=4,
-r, J=5M=5,
0 otherwise.

In the preceding equations, the superscripts ‘0’ and ‘1’ denote quantities in the matrix and the
inhomogeneity respectively; Cy,, denotes elastic moduli, e,; is the piezoelectric coefficient, g,; is the
piezomagnetic coefficient, x;, is the dielectric constant and I, is the magnetic permeability. It is noted
that, in general, the dielectric constant and magnetic permeability are neglected for piezoelectric and
piezomagnetic materials, respectively. However, they are retained in the present work in order to
investigate the magnetoelectric coupling effect in piezoelectric—piezomagnetic composites.

Now, consider an infinite piezomagnetic material containing an ellipsoidal inclusion whose material
properties are the same as the matrix and is defined as

=
W

Q:— +

ENES
Sl
|

+ =<1, 3)

IS
Wi

where a;, a, and a; are the lengths of the semiaxes of the ellipsoid. Let Z7%, represent eigenstrain (or
stress-free transformation strain ¢, when M < 3), eigenelectric field (or electric displacement-free
electric field —E when M = 4), and eigenmagnetic field (or magnetic induction-free magnetic field —H
when M = 5) in the inclusion, and zero in the matrix. The stress o;;, the electric displacement D;, and

the magnetic induction B;, in the inclusion caused by a constant Z%,, in Q can be expressed as:

Oij = Cg‘mn (8’77" - 8:1}1) - quj(Hn - H:)’

n

D; =) (E, — E?)

B = qgnn (8’77” - 8:;7”) + F?ﬂ (H” - H:)’ (4)

in which g,,, represents the elastic strain tensor, E, is the electric field, and H, is the magnetic field. In
the shorthand notation, the constitutive equation Eq. (4) can be unifined into a single equation:

Zi] = L?JMM(ZM” - Z#/;/In)7 (5)
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where
Gij J<3, Emn = SymarZ tlb M<3,
2y=3Di J=4,,Zun=1—E.=SsnZ%, M=4, 6)
B J=35, —H, =S5, Z%;, M=35,

with Sy/,4» being a collection of 9 tensors that are referred to as the magneto—electro—clastic Eshelby
tensors analogous to the Eshelby tensor for elastic inclusion problems (Eshelby, 1957). As will be seen in
the subsequent development, the magneto—electro—elastic Eshelby tensors are the key ingredients
necessary for determining the magnetoelectric coupling of piezoelectric—piezomagnetic composites. It is
useful to express Sy, explicitly in terms of the magneto—electro—elastic moduli LY, i.e.,

1
Smmlb = %{C ?jAh(ijin + anim) + C]?ah(GmSin + GnSim)}s

1
Smn4b = 8_nK?h(Gm4in + Gn4im)a
1 0 0
SmnSb = g ’qb[/‘(ijin + anim) - F,‘b(GmSz‘n + GnSim)}»
1 0 0
Sanap = E(C ijAbG4jii7 + qiabG45in),
1 0
Sapap = _EK,'Z,GMin,

1Ly 0
Sansp = E(qbijG@'in -r ibG45in),

1
Sspap = i (CY, 4y Gsjin + 4oy Gssin)»

1
Sspap = _EK%GMM
Ssusp = i(CIQGS“ — I Gss; ) (7)
n 4 bij T Sjin ib in |

in which G,y;, is defined by (Mura, 1987; Huang and Kuo, 1997)

1 271 _ o _
Gumiin = J J Nuy(E)D™H(E)EE, do das, 8
-1 Jo

with Ny(&) and D(&) being the cofactor and the determinant of the 5 x 5 matrix, [L?JMan,-En].
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2.2. Effective magneto—electro—elastic moduli

Suppose that a sufficiently large two-phase composite consists of randomly oriented piezoelectric
ellipsoidal inhomogeneities (Q;, Q,,..., Q5) with magneto—electro—elastic moduli L}JMn and volume
fraction f. The surrounding matrix is piezomagnetic and has a magneto—electro—elastic moduli LY, .
The effective magneto—electro—elastic moduli, Lisvm, of the composite have been obtained by Huang and
Kuo (1997) through the Mori-Tanaka theory (Mori and Tanaka (1973)), incorporated with the

equivalent inclusion method (Eshelby, 1957) as
Ligin = LYy 45 +fLY 43 VZZL]R (L}]RMn - LSRMn)]a ©)]
where VZIL‘J is the inverse of V;; 4y, defined by

Vieas = (1= )L — Lyam) Ssnav + LY 45 (10)

Due to the coupling interaction between magnetostrition of piezomagnetic phase and piezoelectricity
of piezoelectric phase, the effective composite properties, Lim, should be comprised of the
magnetoelectric coupling effect. Thus, the unified notation, L, in Eq. (9) is defined as:

Cijm  J, M<3,
ey J<3, M =4,
Gy J<3.M =35,
Lijyn = e—”;lc’:-n j; j: ]\Aj[[ii’l, (11
—dip J=4 M=5J=5 M=4,
qimn JZS’ MS35
—Iy J=5M=5,

in which /;, stands for the magnetoelectric coupling coefficient that is absent in the constituents of the
composite. Thus, the overall stress, electric displacement, and magnetic induction in the composite are
expressed as

0jj = Cijmngmn - enijEn - Cln,'an,

Di = éimngmn + ’zinEn + j~ni1—1n

Bi = é,-,,m?»mn + ZinE_‘n + fi)1Hn (12a)
or, in the unified notation,
2 = LisnZm, (12b)

where the overbar denotes quantities associated with the entire composite.

3. Evalution of magneto—electro—elastic Eshelby tensors

The magneto—electro—elastic Eshelby tensors, Sy/,.45, given by Eq. (7) readily demonstrate that
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Smmzb = Snmab = Snmba = Smnba M, A §39

Spnab = Sumab M<3, A=4,

Sunab = Swnse = Sumsp M< 3: A =5, (13)
S4nab - S4nba M= 4, A < 3,
Ssnab = Ssnpa M=5 4<3.

With the help of the symmetry relations above, one can show that the number of non-zero Eshelby
tensors is 41 for an ellipsoidal inclusion embedded in a transversely isotropic piezomagnetic medium,
and among them only 28 are independent. Since the independent Eshelby tensors are of fundamental
importance in the later evaluation of VAT,lq x and Lisam, it is useful to list them herein:

|

S =
1111 4n

(CY% Gt + C%G11 + CYGi1 + 43, Gisiz),
1
St = E(C?zGllll +CY% G+ C% G113 + ¢5,Gisiz)s

(C%Gi1 + CG112 + CHG1 + ¢5Gisi3),

|
Sz = —
EE R

1
Siis3 = E((]&Gml +¢5,Gia1z + 435Gzt — I'5Gis13),

1
S = E(C?Isz +C%Ch 4 CYGans + ¢3,Gasna),

1
S»m = E(C 9,G1212 + C Y Ganny + C9,G303 + ¢5,Gosn3) s

1
S233 = E(C .G1212 + C%Gannn + C%5G303 + ¢55Gasns)s

1
S2s3 = E(QgIGIZIZ + ¢5,Ga2 + ¢33Gazos — I'53Gasn3),

1

in (CYGratz + C,G33 + C G333 + 43, G3s33),

S3311 =
1
S3300 = E(C G313 + CY,Gazos + CVGazss + 3, Gss33 ),

1
S3333 = E(C .G 1313 + C1,Gaaos + C 33Ga333 + ¢33G3s33 ),

1
S3353 = E(qglGlm + 45,633 + ¢3,Ga333 — I'%5Gis33),
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1

Sy = 8—n{Cg4(G2233 +2G2323 + G332) + ¢)5(Gasrs + Gasm) |,
1

S5 = E{CI?5(G2233 +2Ga323 + G3320) — IV, (Gasas + Gasm) |
1

Si313 = 8—n{C24(G1133 +2G 1313 + G3311) + ¢)5(Gis13 + Gasin) |,

1
Si351 = g {6%5(G1133 + 2G1315 + Ga311) — T,(Gis13 + Gssin) |,

T

1
S22 = E(C?l — C%)(Grin + 2G1212 + Gany),

-1

Sara1 = =

0
K1 Gaat1,

—1

0
S = yrt! Gaa22,

-1
0
—nK3gG4433,

S4343 = 1

1
Ssi13 = E(CLGHB + C %G1+ ¢Y5Gssi1),

1
Ss151 = ) (4)5G1s513 + ¢)5Gas11 — T, Gssin),

I

1
Ss003 = Tr(c %Gas23 + C4,Gasm + ¢)5Gssna),

4

1
Ss250 = E(Q?sGZSB + ¢G5 — I, Gss»2),

1
Ss311 = E(C%GISB + C%Gasns + CYGs333 + ¢3,Gss33) s

1
Ss300 = E(C 9,Gis513 + CY Gasaz + C9,G3s33 + ¢3,Gss33) s

1
Ss333 = E(C 9.Gi513 + CGasos 4+ C %Gs33 + ¢33Gss33 ),

2987
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1
Sss43 = 1 (63,G1513 + 65, Gas2s + 453 Gs333 — I3 Gss33). (14)

4
In derivation of the foregoing equations, the generalized Voigt two-index notation:

11—1, 22—2, 33—3, 23—4, 315, 12—6, (15)
41—7, 42—8, 43—9, 51—10, 52—11, 53—12,

has been adopted for the magneto—electro—elastic moduli L, ,, .

It is observed that the tensors in Eq. (14) can be divided into three categories. The first category
consists of those tensors related to the elastic response under eigenstrains, i.e. Sii11, S1122, S1133, S2211,
52222, 52233, S1212, S1313, 52323, S33]1, S3322 and S3333. The second involves those related to the
piezomagnetic response due to the initial piezomagnetic fields of the same kind, S4141, S4242, Sa343, Ss5151,
Ss5o50 and Ss353. The third category includes elastic and magnetic interactive terms: Siis3, S2053, 53353,
S1351, 52352, Ss113, S5223, Ss311, Ss5300 and Ss333. Note that the tensors in the first and second categories
are dimensionless, while the interactive terms in the third category relating dissimilar physical quantities
are dimensional.

Next, we attempt to analytically explore the magneto—electro—clastic Eshelby tensors for some
practical inclusions in the micromechanics and composite communities, such as elliptical cylinder,
circular cylinder, penny shape and ribbon, embedded in transversely isotropic piezomagnetic materials.
To this end, complete explicit expressions of the determinant D(&) and the cofactor Ny /(&) of the matrix
[LY3,Ei€,] are carried out first, followed by substituting D(¢) and Ny (&) into Gz, given by Eq. (8).
Consequently, complete explicit expressions for the corresponding G,,;;, are then obtained. Having the
explicit expressions of Gz, in hand, closed-form expressions of the magneto—electro—elastic Eshelby
tensors for piezomagnetic materials can be obtained below.

(a) Elliptical cylinder (a;/a>=a, az — o0):

2+3a)CY, +aC?,
21 +a)*CY,

1111 =

(3a+2d*)CY, +aC¥,

Som = 5 ,
21+ a)’C?,
- —aCh + 2+ a)CY,
122 = 0 ,
2(1 +a)"CY,
S = —aCty +(a+2a)Ch,
21 +a’CY,
CO
Sz = N

1+aCy’
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S aC?3
0B = s
(1+a)CY,
0
431
Si153 = ————7->
1+ a)C?,
0
a
Sns3 = 131

1+aCy’

(1+a+d)CY —aCy,
21 +a)*CY,

S1212 = S1221 = S2112 = o101 =

b}

1
1313 1331 3113 3131 2t a)
a
2323 2332 3223 3232 2 ta)
S. = Ss5151 = !
4141 = 5151 = 7
a
Saar = Ssps0 = T a (16)
(b) Circular cylinder (a; = a», az — o0):
5C9 +CY
S N _ 11 12’
1111 2022 78@1)]
—-CY, +3CY
S =S — 11 12’
1122 2211 48@1)1
CO
Si33 = Sy = 5
1133 2233 ZC?I’
0
43
Siis3 = Saosy = ,
1153 2253 2C(1]1
3¢), - ¢,

S1212 = Si221 = S2112 = S2121 = T
8CY,
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1
S1313 = S1331 = 83113 = S3131 = S2323 = 52332 = S3003 = S = 1
1
Sa141 = Sapa2 = Ss151 = Ss50 = 5 (17)
(c) Disk (a1 =a», az— 0):
1
S1313 = S1331 = S3131 = S3113 = S2323 = S0 = S3232 = S = 5
Si3s1 = S3151 = S2350 = Saos2 = ‘1_1%,
2C44
_ i+ Chry
Suin=Sun="—"5"—35
q3; + C33153
CO 0 _ CO 0
Ss311 = Ss300 = —13?33 330q3l
2((1?3 + C(3)3F33>
83333 = Saz43 = Ss353 = 1. (18)

(d) Ribbon (a1<a,, a/a;=a, az — 00):

Sllll =1 a(c(l]l B C(I)Z)
2C9, ’
S0y 4 (2 —-3a)CY,
n»=-; 72C?1 ,
S2211 — a(C(I)Z B C(l)l)
2C(1)1 ’
Sy — a(3¢) +CY,)
00 = —ZC?I .
1 —a)C?
Sz = -

0 b
Cll
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aC?
Sa33 = —2,

cY

(1 —a)qg},
Si153 = ,

Y

a

Snsy = o

1 a(CY +CY,)
St = Sim1 = Saipp = Saym = 2 — DN EED)
1212 1221 212 = 2121 = 5 2T,

l1—a
2 b

S1313 = S1331 = $3113 = S3131 =

a
82303 = 82330 = S3003 = S3030 = R

S4ts1 =Ss151=1—a

Sz = Ss250 = a. (19)

4. Closed-form solutions for the magnetoelectric coupling coefficients

With the explicit model for the effective magneto—electro—elastic moduli proposed in Section 2 and the
analytical expressions for the magneto—electro—elastic Eshelby tensors in the preceding section, the
magnetoelectric coupling effect of piezoelectric—piezomagnetic composites is to be investigated
analytically in this section. It is readily shown from Eq. (9) with the aid of Eq. (11) that

= A2 )5V s + (T = T Vis )
i = —f26014YsV s + (T}, = TV s )

day = ~f{KGa5 (Vahy + Vi) + 1555V i + (s = T5) V igis ) (20)

and /_1,7 = 0 otherwise. By inspection of the equations above it is seen that to analytically evaluate the
magnetoelectric coupling coefficients, the inversion of the fourth-order tensor has to be carried out
before proceeding any further. Therefore, a special scheme for the fourth-order tensor inversion must be
developed which is outlined here. First, with the generalized Voigt two-index notation given by Eq. (15),
a 12 x 12 matrix is constructed for a given fourth-order tensor. For example, the fourth-order tensor,
Virap, given by Eq. (10) for an ellipsoidal inclusion embedded in transversely isotropic piezomagnetic
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media, can be mapped into the following matrix:

[ Vi Vi Vs 0 0 0 0 0 Vi 0 0 Vitss
Vot Voo Vaxzz 0 0 0 0 0 Vs 0 0 V2253
Visir Vaze Vazzzs 0O 0 0 0 0 V3zaz 0 0 V3353
0 0 0 Vs 0 0 0 Vg 0 0 Vasa 0
0 0 0 0 Viziz 0 Vizar 0 0 Vizst 0 0
0 0 0 0 0 Vioiz O 0 0 0 0 0 @1
0 0 0 0 Visiz 0 Visar 0 0 Vigsi 0 0 '
0 0 0 Vo 0 0 0 Voo O 0 Vausa 0
Visir Vaan Viazz 0 0 0 0 0 V3az 0 0 V3453
0 0 0 0 Vis;z 0 0 0 0 Vissy O 0
0 0 0 Vosos 0 0 0 0 0 0 Vysso 0

L Vasii Vasa Vassz 0 0 0 0 0 0 0 0 Visss |

The non-zero entries of the above matrix are obtained directly by substituting Eq. (14) into Eq. (10)
and by use of Eq. (13). Complete explicit expressions for these non-zero entries have been accomplished
in this work; however, the results are too lengthy to be listed here. Shown in Appendix A are V;;, for
elliptic cylindrical, circular cylindrical, penny-shaped, and ribbon-like inclusions. It should be noted that
in mapping a tensor into a matrix through the generalized Voigt two-index notation, care should be
taken in accounting for the shear strain terms, i.e. the factor of two. Thus the element in columns 4 to 6
of the matrix in Eq. (21) is two times their corresponding tensor component.

Next, the 12 x 12 matrix is inverted and is used to map the corresponding inverse tensor as

Vil V 1_1122 4 1_1133 0 0 0 0 0 4 1_1134 0 0 4 1_1135
Vo V 2_2122 4 2_2133 0 0 0 0 0 v 2_2134 0 0 4 2_2135
Vin Vain Vi 0 0 0 0 0 Vi 0 0 V3335
0 0 0 Vi 0 0 0 Vg 0 0 Vs 0

0 0 0 0 Vidis 0 Vidiy O 0 Vidis 0 0

0 o 0 0 Vi, 0 0 0 0 0

0 0 0 0 Vi 0 Vi 0 0 Vs 0 0

0 1 0 | 0 1 Vi 0 0 0 Vg 0 1 Vips 0 1
Van Van Vs 0 0 0 0 Vi 0 0 V335
0 0 0 0 ] Vihs 0 Vihe 0 1 0 Vihs 0 1 0

0 1 0 1 0 | Viny 0 0 sz 0 1 Vins 0 1

| Vssn Vsn Vs 0 0 0 0 Vi 0 0 Vs |

(22)

As in mapping a tensor into a matrix, in going from the inverse matrix back to the corresponding
tensor, each element in columns 4 to 6 of the preceding matrix is divided by 2 to obtain the
corresponding inverse tensor component. With this scheme, the evaluation of ¥}, is then completed.
Explicit expressions for the components of VATZL[ , appearing in Eq. (19) are tabulated in Appendix B.

Once the inverse of the tensor V;;,, is obtained, it can be used with Eq. (19) and Egs. (B1), (B2) and
(B3) to obtain closed-form solutions of the magnetoelectric coupling for elliptic cylindrical, circular
cylindrical, penny-shaped, and ribbon-like inclusions. After some straightforward but tedious algebratic
manipulations, the closed-form solutions are written out compactly as follows.
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(a) Elliptical cylinder (a;/a>=a, az — o0):

A U @)’ f(1 =/ )1 = a)elsif g)5T 1,
(@+fYq)sYi + (1 —f )V elsYia+ Y11 Y1 Y13

T — —a(1 + a)’f(1 — £ )1 = @el 51 43T},
@els(1=f VY + 0 +af Vs Yn+ YuYn¥n

N =2f(1 _f)q(3)1€%1 VEN

33 = . 23)
. 21 +a)Ys +a(l —f Y Yy +aYs (
(b) Circular cylinder (a, =ay, a3 — o0):
A=Ay = —4f(1 — f Jelsqiski, I
(L4 Y+ (1= f)(k}, Y1 + Y1)
- 2f(1 — el 2
a3 (1 =/ )es 143 (24)

T A-Ch-ChL-Cl)—a+/)CY
(C) Disk (01 =dy, A3 — 0)

T = Joy = —f(1 —f)€}54?5
R (el N (R Yol

- =/ —f)e§3xg3q(3)3l“§3 Y30
I3z = ) (25)
Y3pY31 +(1—f )Yz

(d) Ribbon (a;<a», ai/a»=a, az — 00):

- (1 —a)f(1 — f)elsid ¢sT ),

Al = > ,
(@a+f—af ValsYu+ (1 —aP( —f)elsYi— Y1 YY1
/‘122 _ af(1 —f )1 — a)e%s’c(l)lq(l)sr}l
(I —a+af ) (Y — Yul'l,) —a(l —f )}, Y2
~ 1 0 1
A3 f(1=f )f%ley Y30 (26)

C2a2(1—f Y3 + Yo +a(l —f ) Ys3

The coefficients Y;;—Y33 in Eqgs. (23)—(26) are listed in Appendix C.

It is seen from the above equations that the magnetoelectric coupling is a function of phase
properties, volume fraction, and inclusion shape. It is also of interest to examine the behavior of the
above solutions for the two-phase piezoelectric—piezomagnetic composite in the low and high
concentration limits. As f— 0 and f— 1, the magnetoelectric coupling coefficients vanish. This verifies
that the magnetoelectric coupling coefficients are absent in each constituent.
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5. Concluding remarks

The most significant work to follow the investigation presented in this paper is the deveopment of an
analytical prediction for the magnetoelectric coupling coefficients of a piezoelectric—piezomagnetic
composite, as shown in Eq. (20). The ingredients for such a task are completely contained in the present
article. Another valuable result is the closed-form expressions for a set of nine tensors for four practical
inclusions in the micromechanics and composite communities: elliptical cylinder, circular cylinder, penny
shape, and ribbon. These tensors are referred to as the magneto—electro—elastic Eshelby tensors
analogous to the Eshelby tensor in elasticity. With these tensors, the magnetoelectric coupling
coefficients are then obtained in closed forms as given by Eqgs. (23)-(26) for the mentioned four
inclusions. These results could provide us with an insight into how a piezoelectric—piezomagnetic
composite material consisting of inclusions will perform and would be helpful in understanding the
magneto—electric—elastic behavior of the composite. Also, the method presented here can be equally
applied to piezoelectric materials containing a finite concentration of piezomagnetic inclusions.
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Appendix A

The non-zero elements in Eq. (21) for elliptic cylindrical, circular cylindrical, penny-shaped, and
ribbon-like inclusions are listed as follows.

(a) Elliptical cylinder (a;/a>=a, az — o0):

(-7

— 2 et [e+3aC), —aCl] - 24 3a)CY +aClh(Cl + C!
2(1+a)2C(1)1{ nl¢ )C iy 2] = ( )C 1L(C 12

Vi = CY, +

+2aCY, — (1+20)C%) |,

Cha-r) 2
Vim = Clt 5 S (2Ol - ed) +2ee (Ch - eh) ol e - e,
11

+cl =3ch) +eh(ch +ch-ch)]].

Clha - H{=-Ch +Cl+a(-C)+Cly)}

Vi = C?3 +
1+ a)C?

)

Ch - Ch _a N +a+d)Ch —aCh](Ch - Ch, - C} +Ch)
2 2(1 +a)’CY,

E)
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(1=/)(Ch = Cly)

Visiz = CYy +

14+a ’
(1 =1 )eis
V =
1413 T+a
(1 —f)qgs
V =4q" -
1513 = {5 1+a
1-s)

2
Vo = C + {202C?2(C}1 —Ch)+20)(C,-Ch) + a[c?l - CY

21 +a)’CY,

(4 + Cly —3¢h) +ch(ct + ch -]

(I-x) 20 (0 1 0 (1 0 0 0
Vo = C + ———~ 1 —24°C%(CY, =) +2¢9%(Cl,—CY%) 44| —3CY +C
11 2(1+a)2c(1)1{ 11 11 11 12 12 12 |: 11 11
Bl —ch)+chch+ch-cwlh
Vi = CY + (1-)CH{CL - Ch+a(C] - CY)}

1+ a)C? ’

a(l — cl,—clY
Vass = CY, + ( f)( 4 44)

l+a ’
a(l = f)el
Voss = %,
a(l —f)q}
Vasoz = 6](1)5 - Tals’

(1=/)(C) +aCh,)(Cl - Cly)

Vi = CYy — ,
(1+a)Cy,

(1—f)(aC? +CY)(CY = Cly)
(1+a)C?, ’

0
V3 =C 13 —

(1=/)(CY, +aCY,)el,
(1+a)CY, ’

Vi =

2995
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(1—/)(aCY; +CY,)ely

V3an =

(1+a)C¥, ’
V333 = d=/)Chen —/)Chey
c
Vst = q%, — (1 =/ NCh +aCt)d}
(1+a)CY,
Vs = q3) — (1 =/ aChy + Cha)d
(1+a)C?
(1=£)C gl
Visss = g3y — ———2 2L,
Y
(1 —1)ejs
V - s 7 D
1341 T+a °
(=) — 1)
Vi = _K(l)l + l—}-lla L N
a(l —f)(k}), — xiy)
Vaaar = =i}
2442 Kip + T +a )
Vs = —K%,

(1 =Hghlct, = +a(cl,—cY,)]

Viiss = (](3)1 + (1 +a)C° >
11

(1—=/)q}
Visst = qs — Tals,

(=), —r})

Vissi = I
1551 1+ 1 +a

>

(1= [ChL—CY+a(C] - CY)]
(1+a)C¥, ’

Vass = ¢35 +

a(l — f)qs

Vassa = qs — +a

k)
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a(l — /)Y, —T}))
14+a

Vassy = =TI, +

(1=/)gn(Cis =)

>

Vissy = ¢35 +

ch
Vagss = (1 =/ )ey 45,
o
1— /)%
Vassy = —I'3; — d=fd C{) M1
11

(b) Circular cylinder (a; = a,, a3 — 00):

(a—=7)
8CY,

Vil = C?l +

(-s)

Vi =CY% 4+ ~——2~2
1122 1o+ SC?]

Vi = Cly +

[—sch+cyGel - ch) +ehBeh -3¢k +ch)l.

>

2
[ct —chBCh + ¢l —sch) + ch(ch -t +3ch)].

(1-/)ChH(Cl, - C) +Cl,—-CY,)

2CY,

Ch=Ch_(-1)
2 8CY,

Vioie =

1
Visis = qs — 5(1 — 1 )dls,

1
Vazy = CY, + 5(1 —)(ChL—CY),

_ 0
Vi =Cl; —

5

(Bch —ch)(c), —Cch,—Cl +Chy),

(1-r)ch+ch)(ch-Cly)

2C9,

(1-1)Cl

B

Ch+Ch)

Vi = C o + (-
cY

(1=/)(C) +C)ely
2C(1)1 ’

Visn =

b}

2997

(A1)
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_(1-/)Che,

V3433 .
cY
Visii = qgl _ a _f)(C?IO"' C(1)2)q(3)1 ,
2CY,
CO 1= 0
Visy = ¢33 — %,
11

1
Visgar = —J; + 5(1 =) =),

1
Vo = 5615(1 -/,

0
V3iga3 = —K33,

o, -HChL+CL-C) =Ch)d,
Viss = q3; + 0 ,
2CY,

1
Vissg = =T, + 5(1 -y, =),

1 .
Vassa = qs — 5(1 —)ds.

0 4 (1=/)(Ci; = C%)es,

V3353 = q33 >
ch
Viass = = )eélqgl
cy
1—1)q%
Viss = -1 — U= 51 (A2)

Ch
(c) Disk (a;=as, a3 — 0):

(1 =/)(C e =20 % + C gy — CHT% + CHC LTS,

Vim = CY + 5
4% + C LT,

E
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Vi =CY% +

2 2
(1 =/)(C e =208 % + Claghialy — CHT% + ChHC Ty,

2 0
4% + C %I

Vi = Ch+(1—=f)(Cl; = CY),

V1313 = C24 + (1 _f)(czlm - C24)a

Vias = (1= f)eys.

Visiz = 4?5 —(1 _f)q(l)Sa

Vs =ClH+ (1 —f)(Cl —CYy),

Vaars = (1 = f)els,

Vasas = 14,

Vi = Cly +

-5

4%+ ChIY,

2
[Chi(adials + C9r%) — O (d% + %) ).

Vi = Ch+(1—f)(Ciy — C%),

_ a-r )3%3(513161% + C(IJ3F(3)3)

V3an

2
4% + C4TS;

Vigzs = (1 = f)els,

V3533 qug3,

Vigar = —xy;,
0

Vi3s3 = —Ks33,

Visii = q3; —

)

4% + C% I,

k)

o[ 0 o (o I 0 0 pl
{%1[%3 +C5(I% — F33)] + C13‘133F33}’

b

2999



3000

T.-L. Wu, J.H. Huang | International Journal of Solids and Structures 37 (2000) 2981-3009

0
Viis3 = g3,

1 — /)%
Vissi = =T — A=/ )dis J;)‘hs,
Cu

Vasa = qs + (1 = f)qls(— 14+ Clu/CY).
V33s3 = f](3)3

Vissy = —T'%. (A3)

(d) Ribbon (a;<a», ai/a»=a, az — 00):

1 —
M = ¢4+ S {2 act +ach(cl + ch - et - chl-2 +ac] +ac ],
11
1 —
Vi = Clh+ S haet(el - ed) et - ehiel -3ch) +
11

(cl—ch—3c]}.
Vs =Clh+ (1 =MOICHI(-1+aCY +Cl, —a(C+ C1, — C 1) ]}/Ch.

chH—-c  (-f)
v _~n 12
1212 7 + 2C?1

[(1+a)C} +aC)](CY —C), = C}, +C1y).

Visis=Cl+ (1= )1 —a)(Cl—CYy),
Vias = (1= f)(e]s — aeys),
Visis = ¢)s — (1 —a)(1 — £ )qs,

(=)
2CY,

Vo =CY, + {a(c) —ch)(Ch +CY—Cl —Cpy)+2¢8(ClL, - CYH)L
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=)

Vorry = CY
2222 n+ 2C(1)1

(ch-ch)l

a-s)

Vs = Cly+ 0 ChlCh-Ch+a(-Ch+ChH+Cl—ClL)l,

11
Vs = Chy+a(l —f)(Chy — C4y),
Vass = a(l — f els.

Vasas = q)s — a(l — [ )qls,

lactGet + el —3ch) —3ch + el Gel - el ] +2ct,

(1 -1+ a)CY —aC)](CY - C1ly)

Vi = CY% +
Y

0
V33 =Cl; —

(1 —=)la(ct =) +ch](ch-C

b}

1)

0
Cll

(1—/)CH(Cl;—CYy)
Co ’
11

Visss = CY5 +

Vi = (1 —f ey (1 —a+aC,/CY)),

( _f)[a(c(])l - C?z) + C(I)Z]e.lsl
cY ’

V3ign =

_ C(l)3€§1(1 -/)

V3433 o ,

Visii = 6](3)1 +(1 _f)q(;l(a —-1- aC?z/C?l),

(1=/)la(C, =) + ]

0
Visn = q3; — Yol
11

(1 _f)c(l)3q(3)1

0
V3533 = q33 — o0 s
11

b

3001
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Visar = (1 = f)(els — aeys),

Vi = =y + (1 =1 = 1)) = x1y),
Vasaz = a(l — f eys,

Vaaar = —) +a(l — )(), —x1,),

0
V3 = —K33,

(1 -/

ol {Ch——-aCY —a(Ch+C| —C})}
1

Viiss = ¢35 +
0 0

Vi3s1 = qy5 — (I-a)(1-f )15

Vissi = =T + (1 —a)(1 —f)(I', = T'},).

0
Vs = q31 + {Ch—-Ch+alcl,—Cl,—Cl + )}

Vassy = q(1)5 —a(l —f )6](1)5,
Vasso = =T, +a(1 — f (I}, = T},),

0 (1 —f)(Cb - C(1)3)‘1(3)1

V3353 = q33 ,
Y
Viass = (1 —f)ed a3,
cy
1_ " 02
Vissy = -8y — LD D (Ad)

0
Cll

Appendix B

Explicit expressions for the components of V ;. ; appearing in Eq. (19) are given by
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(a) Elliptical cylinder (a;/a>=a, az — o0):
Vi = (L+aeis(L =/ )(alfy + A7, = Ty) + F%l)/z{(a +f P lad, + A0 —5ehy) + w1 gt
+els(U = V[alfy + AT = I) + T ]+ (aCly + Cly + Clf = Claf)ant, + 11,

—ch) + ol Jlary A, - 1) + ],

Vs = (a1 = Ya+ 1 elsals [ {(a+1 Pl +708, = cly) + ol 1o + els0 =1 VL,
+AY =Ty +F%1] +(aCly + Cly + Clf = CaNady + A0y — wyy) + jy [al

A8 - )+,

Vb = all + a1 —f)el[@+ O +att = /2 [+ aied, +at = £ e 1(%s
+ afq?5)2+a2e{§(1 — VI +afTY +a(l =) ]+ [Cly 4+ aCly(1 = f )+ Chf

— aC YA, + afi, +a(l — £ ! ][0 + T, +al - £ ),

_ 2
Vs = all + a1 = )els(dhs + afls) /[y + afich, + a1 = 1 ), 1(als + afals) +aPela(1

=PI +afTS, +a(l = )T} ]+ [Cly 4+ aC ly(1 = 1)+ Clf — aC yf] [}, + afic},

+a(l —f ) [, + afTS, + a1 —f)F}l]}’

Vi = —f)eél[ac?z(c(l)z +C = CL)T+/) + ChR+a=1+ 3 )]+ Y [B3a(C1,
— L)1)+ -2+ 2a—4an)]} /] (2c0,(Ch - el + - )
+222C0, (€ = ) (Cl+ o=l +a(chy(ch - e —2ch el + el )a
DA el TURY D) (Rl AN Tol i Tel Nel NI el SR el (VAR Yol Nl AR Tel 174
—6CC L+ 3C ) + Ch+372) = CH(CY +2C ), +2C L = 6C 1/~ 23

+C?J2+6C%1f2)))“33}’
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Vi = (1 =)eh {Chat 31— 1= (1 =/)CH(Ch+Cly - L)+ CU3a -/)(Cl
— ) =20+ 2= D]} [ ]200,(C0 - L) (Ch + - ) + 200 (¢,
— ) (Ch+ -l +deh(ch -l —20heh+ Ch)a—r P+ cha
—)(4CHC L, = Ch+3C ] = 3C 5 +3C =20 HC L= 3C = 6CHC 1S
F3CH) + O3, ) = Cl(CY +2C ), +2C L= 6C L f =20+ Clyf ?

+echs)])

Vi = Viss = 0. (B1)
(b) Circular cylinder (a; = a», az — o0):
Vil = Vs = (L =eis(IY +/T%, + ', _.ﬁ%l)/{(K?l + /iy + k= fier) (4]
02 2 , : s
+fa1s) Fers( =/ (I +/Th + Ty =/Thy) + (Cly + Cly + Claf + Claf) (i),

A, il — Al (0 0+ =)

— — 2 2
Vihs =Vins==20 =)0 +f )5’{5‘115/[(’((1]1 + i)+ 1y = fien)(gs +fqs) +els( = f (I,

ST + T —T) + (Cly + Coy + CUf = Clf) i), + ik + xefy — ficy ) (T,

/0, 1 - ),

VZ%IH = VZ3122 = — )6_%1
’ A=) (CHL+ClL=Ch)+U+/)CY s

Vi =Vigs =0. (B2)
(C) Disk (a1 =dy, A3 — 0)

Vs =V = A =1 )els
) 2(Cly+ Clf — CuNKl,
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Vi =V =1 —=)(Ches, — C(1)3‘1(3)3)eé3q(3)3ré3/{ — K33 <2C23q221 —4C 14545 + (€Y
+C)g% —2C IS + (Y, + C?z)C(3)3F(3)3)[ C 315 +/(q33
= ORI |+ 2017 (€ s =€) [ty + C sl —fay)

R+~ i

— 2 2 2
Vs =0 _f)€;3r(3)3{2C(3)3q(3)1 —4C 105145 + (Cy + Ch)g8s — 2C 155 + (CF) + C) C 415
2 2
20 b (gt~ bk} / {x23[2c23q21 ~ACgh + (CY + )
- 2098 + (¢, + C?Z)C23Fg3][ C3T% +f(‘h3 33)F(3)3)] +2(1

=K% (Chad — Cla%)[fChad + (1 —F)C a3 — (C (1 —f)—i—fC(l)3)q(3)3]Fé3},

Vs = —ess(l f)‘]33{2c33(131 4C%5q% 4% + (CO + €0 gl — 2058 + (¢,
2 2 2
set)etrt)/ {x&[zcgﬂgl —ACT R + (O )~ 208+ (€
+ C(I)Z)C(S)BF(3)3][ C3T5 +/’<q 33)F(3)3)] +2(1 = £ )55 (Cha8; — C345)

X [fcgﬂ(s)l +(1- f)szqn ( 13(1 —f)+fcn)%3]ré3}v

Vs =Vahs =0. (B3)
(d) Ribbon (a1<a,, a)/ay=a, az — 0):
Vis=0—a(1—fejs{ — I + (1 —a)(1 —f )Y, —T1)) }/{2(a +f—af Y[ -« + (1 —a)l
— () — Kll)]qls —(Il—ay(1—f)e 12[ +0-a -, -r)]+[Ch
—( =)=/ )NCY - C) =t + A =)0 —f ) —xiy) ][ = TF, + (1 —a)(1

- =il
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Vs = (=@ =/ a+f—afelsals [ | = @+ r—ar Y[ =y + (1= =),
—x})]als — (=@’ = Yels[ = I + (1 =) =), = T1)]
+[Ch - - —f)(Ch - Ci)][ -«

(a1 =) — k)= 1% + (= ad =) - 1))

Virs = a(l = els{(a— 1= af Y —a( =P}/ =200 = a( =£P[), + a1 1))y
i) lals — 2421 = f Ve[ +a(l — £ )(I}, = 1)) ] = 2[CY + a(Cly — €)1 —1)]

< [+ a(t =)k =)0 +a( = )(r), = 19)]].

Vs = a(l )1 = a(1 —/ Nelsals /{11 = aQU = /P[0, +a(l =1 )k = 13, g% — 241
— el +a(t =)} = I)] = 2[C + a(Cly — L) =]k, +a(l — )i,

— ki) +a(t =1)(T, - F(l)l)]}’

Vi =ey( —f)[C?i[—2+a(5 —3f) =241 - )] +a(l =2a)(1 =/ )CH(CT, +C1, = C1y)

CY[a(=3+2a)1 —f)(C}, = C1,) +2(1 —a)CY(1 —2a +2af)]}/;c‘3)3{2a2(1 —ry

< (€ —ch)(ch —cth—ach el +achcl — o) —ach (€ — ch)(c),
+CU = Cl) —all = (Y —Ch—Cl+ Ch)[ —chich -l - ch)

+Ch(—143/)+CY(BCL +3C), +2C% —3C /- 3C}2f)]},
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_ 2 . .
Vi = a(l —f)e;l{c?l(l +2a(—1+/)=3f)+ (1 —2a)l —f)C(CY,

+Cl = ChL)+ CHI(=3+ 201 —f)(C 1y = C1y) + Chy(—2 + 4a + 4f

~aa )} [ faca et et (e - e —achel v o vachel - )
200 (Ch — CR)Ch + ) —at —f P~ €+ el - et
— el Ch) + R + (e 430k + 20 3c 3]

Vi = Vigss = 0. (B4)

Appendix C
The coefficients Y;; — Y33 in Eq. (23) are given by:

Y= (a+/ )i, +ryy — fichy

Yio = (a+/)IY, + T —/Th,

Yi3=aCly+ Cly+/Chy — fC .

Vo =1 +afly —al=1+/)I,

Yo = k) +afic} —a(=1+f )iy,

Y3 = Cly+aCly+af(Cl — Cy).

Y30 = —aChH(CH+Cl = ClL)(1 —1),

Y3 = C(l)z(c(l)z - C}I - C}z)(c(l)z - Cll - C}Z)’

Y3 =aCly+ Cly+/CY —fCl
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3
Vi = CH1+3 )+ (1 —)(4ChC L +31—1)(Cl - Ch)(Ch + ) —2Ch(cl
+3Ch) —(1=3)C%) — ch[a s Peh v 20 +1)(Ch -3 )] ()
The coefficients Y;; and Y, in Eq. (24) are given by

Yi

A+ P+ {0 +/)Cy+ 1 —NHcLHa+H10 +a —Hri}

Yio = els(1 = I +/)0 + (1 =) ). ()
The coefficients Y3o, Y3; and Y3, in Eq. (25) are given by

2 2 2
Y3 = 2C 5345 — 4C N3d3145% + (CF) + Ch)dy = 2C[3I5(CH) + ) C5 T,

Y3

K33( C 33753433 +J<q33 C§3)F(3)3)>

Yy = 2K(3)3(C(3)3q81 - C?3qg3){fC3;q3] + (1 - f)Cazqal [fC?3 +(1-f )C%S]qg3}F§3. (C3)
The coefficients Y3y, Y3, and Y33 in Eq. (26) are given by

Vi = (C) —CH)(C+Ch—Cl—CL)(C), —Ch,—Cl +Chy).

Y3 = =2CY(CY = CH)(Chy +fCy —fCHy)

Vi = (€} = €Y= Ch+ C)[a—reh(ch -l = ch) - - 3)ch + ¢3¢,

+3ch +2¢h - ¥(ch + b)) (C4)
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